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Resume 

Le but de cette etude ést d'évaluer la mise en place et les performances de I'association 
de réseaux de PCs (clusters) distants, en combinant dynamiquement plusieurs clusters 
pour former un seul super-cluster à travers les réseaux locaux existants, voire même 
Internet. La mise en place d'une telle configuration est décrite, ainsi que la structure des 
réseaux empruntés, les machines utilizées se trouvant sur des sous-réseaux Ethernet et 
des switches ATM différents. On montre que les réseaux exclusivement commutés 
n'apportent qu'une très faible dégradation de performance, alors que les routeurs peuvent 
avoir une influence appréciable. 

Abstract 

We investigate the configuration and performance of remote commodity computing 
clusters. This is the dynamic pooling of separate clusters into a single large remote cluster 
via existing LANs or even the Internet. We discuss the configuration and setup of these 
remote clusters, as well as the networks since these clusters are on separate Ethernet 
subnets and separate ATM switches. We show that pure switching networks add little 
additional overhead to remote cluster computing applications, whereas routers can a have 
significant impact. 

1 Certain commercial items may be identified but that does not imply recommendation or endorsement by NIST, nor does it imply 
that those items are necessarily the best available for the purpose. 

2 Charlotte Martin was a university guest researcher at NIST from the Institut National des Telecommunications, Paris, 
France. 



 

Introduction 

As the number of commodity-based computing clusters [BEC95] increases, the interest to dynamically 
interconnect them and to form temporarily larger clusters also grows. By commodity clusters, we mean 
low-cost PCs or workstations interconnected by common switches or networks, usually running Linux 
or FreeBSD for the operating system. Such cluster computing has become a popular implementation of 
a distributed memory, message passing environment. A primary factor is the significant performance 
and low initial capital cost of these clusters. However, there are substantial support costs which tend to 
be overlooked initially. It has been estimated that one system administrator is required for each 16 to 64 
nodes. Also, as the number of nodes exceeds 32, the number of hardware component failures 
becomes significant in administration of the system. Other costs are hidden in lost productivity and 
frustration for scientists and programmers who must track down "work-arounds" for non-integrated and 
unsupported software. These points and related aspects make smaller clusters of 16 to 32 nodes very 
popular. 

As programs are successfully developed in a cluster environment, there is a strong tendency to pursue 
larger problem sizes. These then require more nodes and associated memory. Eventually, some 
researchers need more nodes than are available in their clusters. Many clusters may exist within an 
organization or at a number of collaborating organizations. It is reasonable to expect cooperation and 
temporarily pooling of the separate clusters into a single large remote cluster via existing LANs or even 
the Internet. This is the basis of our motivation to investigate remote clusters. This is more modest than 
"metacomputing" approaches to distributed computing that wish to use very large numbers of nodes via 
the Internet [GRI97, FOX97]. Where both approaches share some common problems, such as different 
administrative domains and software versions, "metacomputing" faces additional challenges, such as 
security and availability. 

The NIST organization has a number of independent experimental clusters, and thus is a strong 
candidate for using remote clusters. We have evaluated the performance of commodity clusters 
[IND98] compared to some commercially available, integrated clusters, and also have evaluated both 
ATM/OC3 and Fast Ethernet technologies for these clusters [IND98]. An evolvi ng path of this research 
leads us to investigate the performance of remote clusters connected via a pure ATM network, as well 
as our campus wide LAN, which consists of Ethernet segments interconnected via an FDDI backbone. 
We discuss the configuration and setup of these remote clusters as well as the networks since these 
clusters are on separate Ethernet subnets and separate ATM switches. Special attention is given to 
setting up Permanent Virtual Circuits (PVC) and Switched Virtual Circuits (SVC) channels on the ATM 
switches. To measure the performance of these various interconnected clusters we will use the NIST 
MultiKron® [MIN94,MIN97,MIN98] performance measurement instrumentation which is time 
synchronized [LEV95,MIL92], both locally and remotely, with NIST developed instrumentation based on 
the Global Positioning System (GPS). With this instrumentation we will be able to accurately measure 
the throughput and latency between these linked clusters for each of the various networks. 
Furthermore, we will run well-known benchmarks as well as some NIST application programs to 
determine their performance in these remote cluster environments. 

1 Cluster configuration 

To study the performance of ATM remote duster, we have selected two independent NIST dusters 
located on two different sites, separated by approximately 500 meters. They are connected via both 
Ethernet and ATM networks as shown in Figure 1. 
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Each of the nodes on the two clusters are identical, each containing a single 200 MHz Pentium Pro 
Processor, with 16 Kbytes of L1 cache, 256 Kbytes of L2 cache, and 128 Mbytes of RAM. All nodes are 
running the Linux 2.0.29 kernel and Ohio Supercomputer Center's LAM 6.1 [BUR94] implementation of 
MPI (message passing interface) standard. Each machine is dual networked via two Network Interface 
Cards (NICs). One NIC is for 10/100 Ethernet using the Linux Ethernet device driver and the other NIC 
is for OC3 ATM,. Werner Almsberger in Switzerland has developed the ATM device drivers and 
support software as part of the Linux-ATM Application Program Interface (API) software set. 

 

Figure 2 : ATM over SONET (155 Mbits/s) 

ATM uses SONET. The UNI (User-to-Network Interface) specification defines the end user interface to 
an ATM network and includes the SONET, 155 Mbits/s, OC-3 transmission media:. The two clusters 
are connected via multi-mode fiber optic cable. As shown Figure 2, we set up a virtual path between the 
two exterior switches. Then we added two interior switches in order to measure the delay added by 
extra switches. The ATM cluster machines are configured to use Permanent Virtual Circuits (PVCs) 
rather than Switched Virtual Circuits (SVCs) to avoid the latency associated with virtual circuit setup, as 
well as problems we encountered with UNI 3.0 and UNI 3.1 signaling. 
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Figure 1: Configuration of the MIST remote cluster testbed 



 

 

To interface to the NIST LAN, on one side, we used SMC Ether-Express 10/100 cards and the nodes 
are connected to a Mega Switch 5000 HD; on the other side, we have some Intel Ether-Express Pro 
10/100. The NIST LAN, see Figure 3(a), between our two remote clusters has a 10 Mbits/s link. This is 
a potential bottleneck and also presents an unfair direct comparison with an OC3 network. Therefore, 
we configured a 100 Mbits/s Ethernet LAN, see Figure 3(b) between two groups of nodes that included 
2 switches and a router. This LAN was used in our experiments to simulate an all 100Mbits/s NIST 
LAN. The switch is a 3Com Super Stack 100 Mbit/s and the link between the two switches is a Xylan 
router, 100 Mbits/s. 

The actual NIST LAN, with a 10 Mbits/s bottleneck link, may be representative of interconnecting 
clusters through the internet, where such occurrences are common. Also the actual NIST LAN can be 
used to simulate scaling problems as the size of the cluster and the amount of traffic grows. 

2 Performance measurement tools 

In addition to the standard "gettimeofday()" clock, we also used the NIST developed MultiKron® 
[MIN94] performance measurement instrumentation. MultiKron® is an application specific integrated 
circuit designed for performance data collection with low perturbation and high precision clocks. An 
associated toolkit [MINK97] has been developed consisting of a printed circuit board (PCB), support 
software, and analysis software. The PCB contains a MultiKron® chip with 16 Mbytes of dedicated 
memory for measurement data, some logic to control the PCB activities, and an interface to a common 
I/O Bus. PCB versions exist for PCI, SBus and VME bus computers. The analysis software is a series 
of libraries and basic data capture/reduction tools used to access and condense the MultiKron captured 
performance data. We have installed a MultiKron® toolkit PCB in each machine of our clusters. All of 
the fine time measurements were obtained by using the MultiKron. 

Distributed processing poses an additional issue of correlating events on different processors. Using 
the Network Time Protocol [MIL92], or its variants [LEV95], results in a time synchronization of 
approximately 1 ms, averaged over a three hours period. This may be sufficient for coarse grain 
events, 
but it is not for fine grain events such as communication latency and execution times. MultiKron 
instrumentation along with custom designed time synchronization hardware will "train" a local oscillator 
based on GPS pulses, to achieve a 1 !!US level of synchronization, worldwide. 

Figure 3: NIST LAN and simulated LAN Topologies. 
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The picture shown in Figure 4 represents two global time synchronizer/generator boards receiving the 
pulse signals from the GPS satellites and each feeding a CLOCK and a RESET signal to separate 
MultiKron boards 

 

Figure 4. MultiKron Integrated with GPS based Time Synchronization instrumentation 

The MuttiKron tracing facility is a low perturbation, hardware assist to the common programmer 
measurement paradigm. The programmer inserts (probe) code in the code to be measured. MultiKron 
reduces the perturbation of this instrumentation to a simple assignment statement. The user data 
written to the MultiKron is used to identify the location in the code, and possibly some qualifying 
information. MuttiKron appends to this user data a node and process ID as well as a timestamp whose 
resolution is 100ns. All this data is then sent off chip for on-the-fly analysis or storage and later 
analysis. The perturbation to the executing process is reduced to a single assignment statement. 
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Each performance counter of the MultiKron can be used as a stopwatch, to time software execution - 
with a programmable resolution down to 20 ns. They also can be used to count the occurrences of 
hardware signals (e.g., cache hits) or to time the duration of a hardware signal (e.g., memory bus 
utilization). 

3 ATM Configuration 

ATM is a point-to-point, switched technology. To connect two machines together-via ATM a virtual 
circuit has to be established between the two hosts. There are two types of virtual circuits: Switched 
Virtual Circuits (SVCs) and Permanent Virtual Circuits (PVCs). 

Switched Virtual Circuits are connections that are established dynamically, and are then torn down 
when the connection is no longer needed. However, there is a high connection delay associated with 
SVCs due to the overhead of establishing the connection. In addition, SVCs are deleted after a timeout 
period if no traffic is sent over the connection. Therefore, the delay associated with SVCs is not always 
predictable. Also, we encountered several problems when using SVCs, such as connections not being 
established, or sometimes failing to remain open. 

One problem we encountered with SVCs was due to the UNI signaling to the switch. It appears that the 
connection between two hosts will drop without either host closing the connection. The ATM signaling 
daemon then goes into a retry loop, attempting to reestablish the connection. A problem arises when 
the signaling times out with an error message. Eventually the host will lock up due to a memory leak 
somewhere in the execution path of signaling. 

Permanent Virtual Circuits are set up once and kept open until explicitly closed. Thus, there is no 
latency associated with establishing the connection, as there is when using SVCs. The disadvantage of 
PVCs is that the switch must be preconfigured with all the connections between the hosts. When you 
have several hosts, and each host needs to communicate with all the others, the number of PVCs 
needed within the ATM switch grows quickly. In addition, PVCs are connection-oriented and 
unidirectional, so to allow two hosts to communicate together requires two connections. 

To avoid the problems of using SVCs between nodes, and to avoid the delay due to the connection set- 
up time, we choose to use PVCs. 

A virtual circuit is specified by concatenating 2 fields of the five-byte ATM cell header, the virtual path 
identifier (VPI) and the virtual channel identifier (VCI). The VPI and VCI are used to route the cell 
through the ATM network, see Figure 5. A cell arriving at an ATM switch at an input port with a VPI X,  
VCI Y will be transferred to the output port with a VPI A, VCI B based on the mapping table of the 
switch. 

 

Figure 5. Composition of a Virtual Channel 
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To establish an end-to end PVC requires configuring pairs of entry and exit ports on each switch, and 
on each node configure a table of the PVCs needed to reach every other node. 

The challenge was to find a simple way of establishing End-to-End PVC circuits between the nodes in 
the different clusters and the switches that connect them. Indeed, the problem is the number of 
connections we need to set. To connect a cluster of x machines to another cluster of y machines, the 
number of connections is 2xy. We investigated different approaches to accomplish the required 
configuration which consisted of using the SNMP agent of the switch, using the web interface of the 
switch or using the direct interface of the switch. 

The switch software provides switch and connection management, IP connectivity, and SNMP network 
management. The Switch Control Software (SCS) controls the switch boards and handles connection 
set-up and tear-down duties. 

We can login and open an ATM Management Interface (AMI) session, using the web interface but we 
do not have any way to automate the dialog configuration. Compared to a login session, the web 
interface presents some graphics and shows a drawing of the connections. We can set up and delete 
PVCs, but again, we have to enter them manually one by one. 

Another approach is use the SNMP agent of the switch. The SNMP agent enables the remote 
monitoring and configuration of these switches. The MIB (Management Information Base) is the set of 
parameters an SNMP manager can query or set in the switch via an SNMP agent. The MIB is specific 
to this switch and we must buy the specific associated SNMP manager for this switch. The cost of an 
SNMP manager was not justified by our intended use as well as potential interoperability problem 
between different equipment. 

AMI is the user interface to SCS. AMI lets users monitor and change various operating configurations of 
the FORE Systems switches, which include IP connectivity and SNMP network management. We 
decided to automate the connections using the software tool Expect. This solution appeared to be the 
quickest to implement and the cheapest. The concept of Expect is to write a shell script instead of 
typing directly the commands on the AMI of the switch. Expect can be used to automate the 
interactions to and from a process. It is based on three key words: SEND (sends strings to a process), 
EXPECT (waits for strings from a process) and SPAWN (starts a process). The language used is TCL 

First, we build a table listing the correspondence between the input port, input VPI, input VCI, output 
port, output VPI and output VCI of the PVCs we want to set up. Then we need to run two scripts. The 
first script configures the endpoint switches. It logs into the switch and loops through the table setting 
the PVCs. We can reuse the same principle to delete the PVCs. Using the same table, the second 
script, which connects to each node, will create the ATM ARP entry on each node. 

For the interior switches, those between the two end-point switches, the process is easier. Only the 
VPIs are needed to establish the correspondence between input and output switch ports, since in our 
case all our traffic enters on one port and exits on a second port. In this case, a single virtual path (VP) 
can establish the connection between the two ports while the various virtual channels pass through with 
VCIunchanged. 

4 Performance comparison 

To determine the viability of remote clusters, we ran a number of experiments to compare the 
performance of local and remote clusters, using our different networks. 

We introduced a simulated LAN in order to be able to compare the remote clusters performances 
between the ATM network and Ethernet. The NIST LAN has at least one "slow" network segment (i.e., 
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10Mbits/s Ethernet links or even slower T1 lines at 1.5 Mbits/s) between remote clusters. So we 
expected these areas to be performance bottlenecks for the NIST LAN. 

Our first set of experiments focused on the network performance, we measured latency and throughput 
from the application viewpoint. 

Latency is the time for a message to be sent from one node and received by another node. To 
measure the latency of message transmission, we sampled the GPS synchronized MultiKron Clocks on 
the send node, just prior to sending, and on the receive node, just after reception. We conducted 
measurements for message sizes between 4 bytes and 6 Kbytes, over various configurations of our 
ATM network, NIST LAN, and simulated LAN. See Figure 6. 

We measured the latency with two sets of ATM NICs and their associated device drivers. We found a 
significant difference between the performance of these NICs in terms of latency, see table 1. The 
latency added by our ATM switch is approximately 18 us, and it appears to be independent of the 
message size. However, the latency added by the Ethernet switch indicates that each Ethernet packet 
(maximum 1460 bytes) is buffered before processing, since the packet of each message are pipelined 
in the switch, this delay only effects the first packet of each burst or message. This explains the slope 
change in our Ethernet curves of Figure 6 occurring at message size of 1460 bytes. The GPS 
synchronized MultiKron allowed us to obtain very accurate measurements. 

 

Figure 6. Message Size vs End-to-End Message Latency 
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Table 1. Switch/ NIC Latency (us) for Different Message Sizes and Different Configurations 

We next obtained throughput measurements on these various network configurations, see Figure 7. 
Throughput is defined as the maximum number of bytes transferred per unit time. 

For ATM, the number of switches does not have much influence on the throughput, the curves are 
almost the same. We also notice that the maximum is reached very quickly. The throughput of the 
Ethernet NIST LAN is limited by a 10 Mbits/s link. The Ethernet simulated LAN throughput is lower than 
that for the local Ethernet network, due to the presence of the router the network cannot sustain 100 
Mbits/s of traffic. 

Our next set of experiments collected performance data on well known benchmark codes and some 
NIST applications. We used the Numerical Aerodynamics Simulation Parallel Benchmarks (NAS NPB 
2.3b2). They are a set of eight benchmark problems that are designed to measure the performance of 
parallel computer systems for a subset of algorithms that characterize various computationally intensive 
aerophysics applications [BAI95]. The eight problems consist of five kernels and three simulated 
Computational Fluid Dynamics (CFD) applications. The benchmarks are based on Fortran 77 and the 
MPI standard. This suite of test programs is useful for our study since it includes programs with varying 
computational granularity and different message sizes. 

In this section, we describe the performance results for each benchmark. We ran them on three 
different networks: ATM, NIST LAN and Ethernet Simulated LAN. For the benchmarks which use 8 
processors, we experimented with three configurations: 8 local nodes, 6 local and 2 remote nodes, 4 
local and 4 remote nodes. The different charts show the processing time and the communication time 
in seconds. For Figures 8-14, each bar represents the total execution time of the process. That time is 
further divided into processing time, as the bottom portion of the bar, and communication time, as the 
top portion of the bar. On the x-axis L denotes local nodes and R denotes remote nodes. 
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Figure 7. Throughput (MBytes/S) for Different Network Configurations. 

The Multigrid (MG) Benchmark is a simplified multigrid kernel, which solves a 3-D Poisson Partial 
Differential Equation. The problem is simplified in that it has constant rather than variable coefficients, 
as in a more realistic application. This code, see Figure 8, is a good test of both short and long distance 
communication, although the communication patterns are highly structured. For the Muttigrid 
benchmark each processor sends messages ranging in size from 100 bytes to 32 Kbytes. 

 

Figure 8. Remote Cluster Performance of the MG NAS Benchmark 
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The 3D FFT PDE (FT) Benchmark, see Figure 9, solves a 3D partial differential equation using Fast 
Fourier transforms. It performs the essence of many "spectral" codes, and is a good test of long- 
distance communication. This benchmark is unique in that it is acceptable to substitute any 
computational library routines. The rules of the NAS Parallel benchmarks specify that assembly-coded 
library routines can be used to perform matrix multiplication and 1 D, 2D, or 3D Fast Fourier Transforms 
(FFTs). Although FFTs send a small number of large messages (about 256 KB each), even this does 
not save the benchmark from being communication bound. FT is a good test of long-distance 
communication performance. 

Figure 9. Remote Cluster Performance of the FT NAS Benchmark. 

The Lower block-Upper block matrix decomposition (LU) benchmark, see Figure 10, does not perform 
an LU factorization, but instead uses a symmetric, successive over-relaxation numerical scheme to 
solve a regular-sparse block (5*5) lower and upper triangular system. This problem represents the 
computations associated with a newer class of implicit CFD algorithms, typified at NASA Ames by 
INS3D-LU. This problem exhibits a somewhat limited amount of parallelism compared to the other two 
simulated CFD applications. A complete solution of this benchmark requires 250 iterations. It sends 
very small messages, less than 50 bytes each. 

Figure 10. Remote Cluster Performance of the LU NAS Benchmark. 
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The Scalar Pentadiagonal (SP) benchmark, see Figure 11, solves multiple independent systems of 
nondiagonally dominant, scalar pentadiagonal equations. A complete solution requires 400 iterations. 
The Block Tridiagonal (BT) Benchmark, see Figure 12, solves multiple independent systems of non- 
diagonally dominant, block tridiagonal equations with a 5*5 block size. A complete solution requires 200 
iterations. The BT solver and the SP solver benchmarks are both communication bound and send 
many medium-sized messages ranging from a few hundred to a few thousand bytes each. 

Figure 11. Remote Cluster Performance of the SP NAS Benchmark. 

 

Figure 12. Remote Cluster Performance of the BT NAS Benchmark. 
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For all of the NAS benchmarks, using remote cluster over an ATM network does not significantly 
change the performances. The ATM network is stable and once the network connectivity is established, 
the use of remote cluster is transparent for the user. We have as our baseline the results of local cluster 
runs which use only fully connected local nodes via an ATM or Fast Ethernet switch. From this we see 
that the computation time of all our benchmarks are identical and independent of local or remote 
configuration. Because of the low overhead of the ATM switches, we see only small communication 
delays which slightly increase the overall performance of local vs remote ATM clusters. 

When we compare local and remote performance for the NIST LAN, performance plummets for small 
messages while for larger messages the communication performance degrades more linearly. For the 
benchmarks which send many small messages like LU, BT, SP we see that performance is as much 
as an order of magnitude slower. Performance over the Ethernet Simulated LAN is comparable to 
using the ATM network. For this configuration moderate to large message size tends to have a 
negative impact on performance rather than small messages. 

We next compare performance of two parallel NIST applications. All applications are written in Fortran 
and use MPI. 

The first application is a Three-Dimensional Helmholtz Solver (3dmd), see Figure 13, which implements 
a matrix decomposition algorithm to solve elliptic partial differential equations, specifically the Helmholtz 
equation. Prior experience has determined this application to be "course grained" since it generates 
infrequent large messages (100 Kbytes or more). Performance advantage is observed for ATM versus 
Ethernet NIST LAN. This result is consistent with the results we obtained previously for large messages 
as FT. 

 

13 

Figure 13. Remote Cluster Performance of the NIST 3dmd Application. 

The second application, OA, predicts the Optical Absorption spectra of a variety of solids by considering 
the interaction of excitons, see Figure 14. The bulk of the computation is concerned with calculating 
matrix elements using an FFT Convolution method to calculate quantum mechanical integrals. Both of 
these applications show significant performance degradation in the remote cluster environment when 
using the NIST LAN, but no significant difference when using the ATM switches. 



 

Figure 14. Remote Cluster Performance of the NIST OA Application. 

Conclusion 

We investigated remote cluster computing using both the Ethernet and ATM networks. We found that 
advanced preparation on distinct clusters significantly eases problems with different administrative 
domains and software versions. This is feasible since the number of different clusters is envisioned as 
being small. 

The ATM switch configuration posed a potential problem, but we devised a methodology to configure 
the switches which was easily implemented through shell scripts. Performance of remote clusters is 
dependent on the underlying network connections. The number of hops and the types of network 
devices influence communication performance. Switch-based networks add little additional overhead to 
remote cluster computing applications. Routers add more. 

We measured approximately 18 us additional latency per ATM switch (hop), resulting in essentially no 
degradation in throughput. Using the NIST LAN, the latency increased approximately nine times 
compared to the local single switch environment. Benchmark and application performance resulted in 
some comparable results for the local cluster using ATM or Ethernet: the local performance increase 
with ATM does not justify the cost of the ATM equipment. A better solution could be mixing the 
networks, with Fast Ethernet as the local end point switches and ATM switches connecting them, 
resulting in lower cost with comparable performance. 

Further experiments would test larger clusters and networks, attempting to establish a rule of thumb for 
scalability based on the bottlenecks of a single pipe between clusters. Alternatives to a single 
interconnection pipe would be to use multiple pipes. This would add additional complexity in 
predetermining the node allocation for each pipe resulting in unbalanced communication loads where 
some pipes may incur delays while others are idle. 
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